On the numerical range of some block matrices with scalar diagonal blocks
نویسندگان
چکیده
منابع مشابه
Some results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملBlock Diagonal Matrices
For simplicity, we adopt the following rules: i, j, m, n, k denote natural numbers, x denotes a set, K denotes a field, a, a1, a2 denote elements of K, D denotes a non empty set, d, d1, d2 denote elements of D, M , M1, M2 denote matrices over D, A, A1, A2, B1, B2 denote matrices over K, and f , g denote finite sequences of elements of N. One can prove the following propositions: (1) Let K be a ...
متن کاملSome results on the polynomial numerical hulls of matrices
In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2020
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2020.1749225